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Cosmological Implication of the Trace Anomaly
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We establish a connection between the trace anomaly and thermal radiation in the
standard cosmology. This is done by solving the covariant conservation equation of
the stress tensor associated with a conformally invariant quantum scalar field. The
solution corresponds to thermal radiation with a temperature which is given in terms of
a cut-off time excluding the spacetime regions very close to the initial singularity. We
discuss the interrelation between this result and the result obtained in a two-dimensional
Schwarzschild spacetime.
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1. INTRODUCTION

In quantum field theory of curved spacetime, matter is described by quantum
field theory while the gravitational field itself is regarded as a classical object. In
this framework, the stress tensor associated with a quantum field is not well de-
fined and contains singularities. Renormalization prescriptions (Birrell and Davies,
1982) are usually used to obtain a meaningful expression for the stress tensor of a
quantum field. One of the most remarkable consequences of these prescriptions is
the so-called trace anomaly (Wald, 1977, 1978). This means that the trace of the
quantum stress tensor of a conformal invariant field obtains a nonzero expression
while the trace of the classical stress tensor vanishes identically.

In a two-dimensional Schwarzschild spacetime there is a close correspon-
dence between the trace anomaly and Hawking radiation (Hawking, 1975), namely
the thermal radiation associated with a black hole at null infinity (Christensen and
Fulling, 1977). The radiation has a temperature T = (4πkBRS)−1 where kB is
Boltzman’s constant and RS is the Schwarzschild radius of a black hole. Here
the length scale RS may be interpreted as a cut-off length excluding the intrinsic
singularity in the interior region of the Schwarzschild solution. In this sense, the
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temperature of the Hawking radiation is given in terms of a cut-off length, RS,
which is characteristic of the Schwarzschild spacetime.

Following the result obtained in the Schwarzschild spacetime we intend here
to relate trace anomaly to properties of a background heat bath in the standard
cosmology. We do this in two parts. In Section 2, we first use a two-dimensional
cosmological model to find the most general solution of the covariant conservation
equation of the quantum stress tensor associated with a conformally invariant
scalar field. We show that the solution corresponds to an equilibrium gas with a
temperature T ∝ (kBt−1

c ) with tc being a cut-off time. This cut-off time is defined to
avoid the spacetime regions in which the semiclassical investigations are not valid.
In Section 3, we show that contrary to the Schwarzschild spacetime, the symmetries
of the standard cosmology allow us to solve the covariant conservation equation in
four dimensions. We solve the conservation equations for spatially flat Friedmann–
Robertson–Walker (FRW) spacetime. At late times, the solution corresponds to
an equilibrium heat bath with the same temperature and physical properties of the
temperature obtained in the two-dimensional case. In Section 4, we outline our
results.

Throughout the following we use units in which h = c = 1 and the signature
is (− + ++).

2. THE MODEL

Let us begin with the results of renormalization of stress tensor T ν
µ of a

quantum scalar field coupled with a two-dimensional gravitational background,
namely,

∇νT
ν
µ = 0 (1)

T µ
µ = 1

24π
R (2)

where ∇ν denotes a covariant differentiation and R is the curvature scalar. The
first equation is a covariant conservation law and the second one indicates an
anomalous trace emerging from the renormalization process. We first solve the
conservation equation (1) for a two-dimensional cosmological model described
by the metric

ds2 = −dt2 + a2(t) dx2 (3)

where a(t) is the scale factor. This is a two-dimensional analog of the spatially flat
Friedmann–Robertson–Walker (FRW) spacetime. The metric (3) can be written
in a conformally flat form

ds2 = a2(τ )(−dτ 2 + dx2) (4)
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where

τ =
∫

dt

a(t)
(5)

is the conformal time. For the metric (4), the nonvanishing Christoffel symbols
are given by

�τ
ττ = �τ

xx = �x
τx = 1

a

da

dτ
(6)

In the spacetime described by (4), all components of the stress tensor can be only
functions of time. Using this fact, the equation (1) takes the form

d

dτ
T τ

τ + �x
xτT

τ
τ − �x

xτT
x
x = 0 (7)

d

dτ
T τ

x + �τ
ττ T

τ
x − �τ

xxT
x
τ = 0 (8)

For the off-diagonal elements of the stress tensor we have T τ
x = −T x

τ . On the other
hand, one can write T x

x = T µ
µ − T τ

τ . These relations among different components
of the stress tensor together with (5) and (6) allow us to write (7) and (8) in the
form

d

dt

(
a2T τ

τ

) = a
da

dt
T µ

µ (9)

d

dt

(
a2T τ

x

) = 0 (10)

Equation (10) immediately gives

T τ
x = α a−2 (11)

with α being an integration constant. The solution of the equation (9) is

T τ
τ = a−2(h + β) (12)

where

h =
∫ t

tc

T µ
µ (t ′)

da(t ′)
dt ′

a(t ′) dt ′ (13)

β = a2(tc) T τ
τ (tc) (14)

and tc is an arbitrary time scale. Given a time scale tc, the function h incorporates
the corresponding contribution of the trace T µ

µ in the stress tensor T ν
µ . The intro-

duction of the cut-off time tc is a mandate in order to exclude in the definition of h

the contribution of the trace very close to the early time singularity. In fact in that
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region an accurate description of quantum gravity is needed and the semiclassical
approach is no longer valid.

In a homogeneous and isotropic universe, we require that α = 0. This implies
that the stress tensor has vanishing off-diagonal elements. In this case we obtain

T ν
µ = a−2(h + β)

(
1 0
0 q − 1

)
(15)

where

q = T µ
µ

a−2(h + β)
(16)

We are particularly interested in the late-time configuration of the stress tensor. It
obviously depends on the explicit form of the scale factor. Thus for studying T ν

µ

at late times, we first assume that the scale factor follows a power law expansion

a = a0

(
t

t0

)n

(17)

with t0 being the present age of the universe. We then use the explicit form of the
trace anomaly for the metric (4)2 to write (13) and (16) in the form

h(t → t0) = n2 a2
0 t−2

0

24π

{
1 − l2(n−1)

}
(18)

q(t → t0) = 2(n − 1)

n

{
1 + n − 2

n
l2(n−1)

}−1

(19)

where l = tc
t0

. Putting the relations (14) and (18) into (15), we obtain

T ν
µ (t → t0) = n2 t−2

0

24π

{
1 + n − 2

n
l2(n−1)

} (
1 0
0 q(t → t0) − 1

)
(20)

One should note that the cut-off time tc is much smaller than t0 so that l � 1. One
therefore infers that l2(n−1) � 1 for n < 1. In this case, the relation (19) indicates
that q(t → t0) � 1. With this approximation the relation (20) takes the form

T ν
µ (t → t0) = n(2 − n) l2n t−2

c

24π

(−1 0
0 1

)
(21)

When one compares (21) with the stress tensor of an equilibrium gas, namely

π

6
(kBT )2

( −1 0
0 1

)
(22)

2 See Appendix
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one concludes that at late times the stress tensor T ν
µ describes an equilibrium gas

with temperature

T = 1

2π

√
n(2 − n) ln (kBtc)−1 (23)

It is interesting to compare (23) with the result obtained in the Schwarzschild
spacetime. In that case, the temperature of the thermal radiation is given in terms
of R−1

S . The Schwarzschild radius RS may be interpreted as a cut-off length that
disjoints the interior and the exterior regions of the Schwarzschild solution. In
principle, this is very similar to the case of the standard cosmology. In this case,
the temperature of the equilibrium gas is given in terms of t−1

c . Here the cut-
off time tc excludes the early stages of evolution of the universe in which the
semiclassical calculations cannot be applied.

3. THE FOUR-DIMENSIONAL CASE

In the standard cosmology, the universe is assumed to be isotropic in all
points of spacetime. This is a larger symmetry with respect to the Schwarzschild
spacetime that allows us to generalize our results obtained in the previous section
to four dimensions. In a four-dimensional spacetime, the analog of the equation
(2) is

T µ
µ = −2v1(x) (24)

where

v1(x) = 1

720
(�R − RµνR

µν + Rµνγ δR
µνγ δ) (25)

Here � ≡ gµν∇µ∇ν , Rµν and R are the first and the second contraction of the
Riemann curvature tensor Rµνγ δ , respectively. We intend to solve the conservation
equation (1) for the spatially flat FRW metric described by

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2) (26)

It can be written in a conformally flat form

ds2 = a2(τ )(−dτ 2 + dx2 + dy2 + dz2) (27)

where the conformal time τ is given by (5). The nonzero Christoffel symbols of
the metric (27) are

�τ
ττ = �τ

xx = �τ
yy = �τ

zz = �x
τx = �y

τy = �z
τz = 1

a

da

dτ
(28)

The homogeneity and the isotropy of the universe imply that all components of
the stress tensor T ν

µ are space independent and can be only functions of time. We
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use this fact to write the time component of the conservation equation (1)

d

dτ
T τ

τ + �x
xτT

τ
τ + �y

yτT
τ
τ + �z

zτ T
τ
τ − �x

xτT
x
x − �y

yτT
y
y − �z

zτ T
z
z = 0 (29)

There are also three space components

d

dτ
T τ

x + �τ
ττ T

τ
x + �x

xτT
τ
x + �y

yτT
τ
x + �z

zτ T
τ
x − �x

τxT
τ
x − �τ

xxT
x
τ = 0 (30)

d

dτ
T τ

y + �τ
ττ T

τ
y + �x

xτT
τ
y + �y

yτT
τ
y + �z

zτ T
τ
y − �x

τxT
τ
x − �τ

xxT
x
τ = 0 (31)

d

dτ
T τ

z + �τ
ττ T

τ
z + �x

xτT
τ
z + �y

yτT
τ
z + �z

zτ T
τ
z − �x

τxT
τ
x − �τ

xxT
x
τ = 0 (32)

For other components of the stress tensor, we have

T x
y = T y

x = T x
z = T z

x = T y
z = T z

y = 0 (33)

T x
x = T y

y = T z
z (34)

T τ
x = T τ

y = T τ
z = −T x

τ = −T y
τ = −T z

τ (35)

T x
x = 1

3

(
T µ

µ − T τ
τ

)
(36)

If we use the relations (5) and (28) together with (33)–(36), the equations (29) and
(30) take the form3

d

dt

(
a4T τ

τ

) = a3 da

dt
T µ

µ (37)

d

dt

(
a4T τ

x

) = 0 (38)

These equations yield

T τ
x = δ a−4 (39)

T τ
τ = a−4(H + γ ) (40)

where

H =
∫ t

tc

T µ
µ (t ′)

da(t ′)
dt ′

a3(t ′) dt ′ (41)

γ = a4(tc) T τ
τ (tc) (42)

3 Due to (35) the same equations like (38) hold for the other two components T τ
y and T τ

z .
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and δ is an integration constant. If we set δ = 0 and use the trace condition (36),
we obtain

T ν
µ = a−4(H + γ ) diag

{
1,

1

3
(Q − 1) ,

1

3
(Q − 1) ,

1

3
(Q − 1)

}
(43)

where

Q = T µ
µ

a−4(H + γ )
(44)

We put the explicit form of the trace anomaly (24) for the metric (27)4 into (41)
and (44) to obtain H and Q in asymptotic times

H (t → t0) = 1

120
a4

0 n2 (n2 − 6n + 3) t−4
0

{
1 − l4(n−1)

}
(45)

Q(t → t0) = 4(n − 1)

n

{
1 + (3n − 4)

n
l4(n−1)

}−1

(46)

The same approximation used in the two-dimensional case, namely that l4(n−1) �
1 for n < 1 results in Q(t → t0) � 1. Within this approximation and using (42)
and (45), (43) reduces to

T ν
µ (t → t0) = λ t−4

c diag

{
−1,

1

3
,

1

3
,

1

3

}
(47)

where λ is a dimensionless constant. This corresponds to the stress tensor of a
radiation with energy density ρ ∝ t−4

c . There is a specific relation between the en-
ergy density and temperature ρ ∝ (kBT )4 if the radiation is thermally distributed.
Therefore the temperature of the radiation is given by T ∝ (kB tc)−1, namely, like
the two-dimensional case, the temperature is proportional to the inverse of the
cut-off time.

4. CONCLUDING REMARKS

We have investigated the stress tensor of a conformally invariant quantum
scalar field in a homogeneous and isotropic cosmology. The covariant conser-
vation equation of the stress tensor is solved in two different cases, namely in
two and four dimensional spacetimes. In both cases, we have shown that the
late time configuration of the stress tensor can be connected to the stress ten-
sor of an equilibrium gas with a temperature that is given in terms of a cut-off
time tc. This cut-off is introduced to exclude the effects of early-time cosmol-
ogy, in which a full theory of quantum gravity holds, from our semiclassical
calculations.

4 See Appendix.
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We would like to emphasize the following remarks:

(a) In a cosmological context, we have developed a connection between trace
anomaly and a thermal radiation in two and four dimensions.

(b) It is well known that the thermodynamic properties of the Schwarzschild
spacetime can be extended to the cosmological models with a repulsive
cosmological term (Gibbons and Hawking, 1977). In such cosmological
models each observer will detect an isotropic background of thermal
radiation. This result shows resemblance to the result obtained in the
present work. In the absence of a cosmological constant in our model
universe, this resemblance implies that the late time configuration of the
anomalous trace in a cosmological context has a nonzero contribution to
the cosmological constant. This feature of the trace anomaly has been
already studied in a different framework in (Salehi and Bisarb, 2000;
Salehi et al., 2000).

APPENDIX

We consider two metric tensors ḡµν and gµν which are conformally related,
namely

ḡµν = �2gµν (A.1)

where � is a smooth dimensionless spacetime function. If gµν describes the
Minkowski spacetime, ηµν , the metric ḡµν is said to be conformally flat.

In a two-dimensional spacetime, any metric tensor can take a conformally
flat form. In this case the curvature scalar is given by (Wald, 1984)

R̄ = −2(�−2
�η ln �) (A.2)

where �η is the d’Alambertian operator in Minkowski spacetime. Substituting this
into the relation (2) and noting the fact that �(x) = a(τ ), we obtain for the trace
anomaly

T µ
µ (ḡµν) = 1

12π

1

a

d2a

dt2
(A.3)

in which we have used (5) to express the derivative of the scale factor with respect
to the coordinate time t . If one uses the explicit form of the scale factor (17) in the
relation (A.3), one arrives at

T µ
µ (ḡµν) = 1

12π
n (n − 1) t−2 (A.4)
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In the four-dimensional case, the trace anomaly (24) for the metrics gµν and ḡµν

are related by (Brown, 1984)

T µ
µ (ḡµν) = − 1

360
e4ω{�R − RµνR

µν + Rµνγ δR
µνγ δ + 2R�ω

+ 2R;γ ω;γ + 6�(�ω) + 8(�ω)2 − 8ω;µνω
;µν − 8Rµνω

;µω;ν

− 8ω;γ ω;γ
�ω − 16ω;µνω

;µω;ν} (A.5)

where ω = − ln � and semicolon indicates covariant differentiation. If gµν = ηµν ,
(A.5) reduces to

T µ
µ (ḡµν) = − 1

180
e4ω{3�η(�ηω) + 4(�ηω)2 − 4ω;µνω

;µν

− 4ω;γ ω;γ
�ηω − 8ω;µνω

;µω;ν} (A.6)

We may use ω = − ln a and (5) to write T µ
µ (ḡµν) in the form

T µ
µ (ḡµν) = 1

60

{
1

a

d4a

dt4
+ 1

a2

d2a

dt2
+ 3

1

a2

da

dt

d3a

dt3
− 3

1

a3

d2a

dt2

(
da

dt

)2
}

(A.7)

With the scale factor (17), (A.7) is equivalent to

T µ
µ = 1

30
n(n − 1)(n2 − 6n + 3) t−4 (A.8)
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